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LETTER TO THE EDITOR 

A hierarchical model for scaling structure in generalised 
diffusion-limited aggregations 

Takashi Nagatani 
College of Engineering, Shizouka University, Hamamatsu 432, Japan 

Received 23 February 1987 

Abstract. Deterministic fractal models are presented to be exactly solvable for the growth 
probability distribution on the surface of the cluster in a hierarchical lattice. The recursion 
relations of the electric field on the growth bond are obtained for diffusion-limited aggrega- 
tion and the dielectric breakdown models. A hierarchy of generalised dimensions D( 9) 
is calculated to describe the growth probability, by using the recursion relations. The 
partition of ( q  - l ) D ( q )  into a density of singularitiesf(9) with singularity strength a ( 9 )  
is made and the a-f  spectra are studied for different dielectric breakdown models. The 
scaling of the highest growth probability pmal on the growth bond is analytically derived 
and the dependence of the fractal dimensions is found on the parameter I) describing the 
different dielectric breakdown models. 

The essential properties of the kinetic aggregation processes [ 1-51 are fully described 
by the growth probability distribution for the perimeter sites (or bonds) of these 
aggregating clusters [6,7]. The growth probability can be regarded as a measure 
associated to each site (bond). The harmonic measure affords a method of quantita- 
tively characterising the relevant properties of the surfaces of such clusters. A hierarchy 
of generalised dimensions D( q )  is used to characterise the harmonic measure, first by 
Halsey et af [6], and independently by Amitrano et af [7]. The set of exponents D ( q )  
was first introduced in the context of chaos [8-111 and later to characterise the 
percolating cluster in a random resistor network [12, 131. The partition of D ( q )  into 
a density of singularitiesf( q )  with singularity strength (Y ( 9 )  is introduced in the context 
of diffusion-limited aggregation [6]. The a- f  spectra are found for the dielectric 
breakdown models [7]. The growth probability has been measured by a computer 
experiment [6] and a numerical calculation [7]. 

In  this letter, we present an exactly solvable model for the growth probability on 
the surface of deterministic fractal aggregates in a hierarchical lattice. We derive the 
recursion relations of the electric field on the growth bond for the dielectric breakdown 
models [ 141 (also referred to as generalised diffusion-limited aggregations). We find 
the set of generalised dimensions D ( q )  and the a - f  spectrum. 

Let us construct the deterministic fractal on a hierarchical lattice. In  general, 
aggregates grown on lattices are viewed as a system of superconductor-normal resistor 
networks [ 151 for the dielectric breakdown models. The growth occurs on the perimeter 
of the aggregate. In  these models the growth probability p ,  at the growing perimeter 
bond i is given by p ,  - ( E , ) '  where E, is the local electric field at the growth bond. 
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We merely solve an electrostatic problem for a superconducting cluster inside an 
infinite normal resistor network. We distinguish between three types of bonds on the 
lattice: ( a )  superconducting bonds, ( b )  growth bonds which are normal resistors at 
the perimeter of the aggregate and (c)  normal resistor bonds except for the growth 
bonds. Our deterministic fractal model is constructed by the three types of generators 
shown in figure l (a ) ,  ( b )  and (c) indicating, respectively, the generators for the 
superconducting bonds, the growth bonds and the normal resistor bonds. Figure 2 
shows the zeroth and first generations. The method of constructing the deterministic 
fractals on a hierarchical lattice proceeds iteratively. The first generation is obtained 
from zeroth generation by replacing the growth bond with its generator (shown in 
figure 1( b ) ) .  The length scale is transformed by the factor Lo = 4. The second generation 
is obtained from the first generation in the following way. The superconducting bonds, 
the growth bonds and the normal resistor bonds (except the growth bonds) are 
respectively replaced with the three types of generators shown by figure l ( a ) ,  ( 6 )  and 
(c). The resultant system is scaled up to four times. The process is continued ad 
infinitum. In this way one can obtain the deterministic fractal aggregate on the 
hierarchical lattice. We note that the number S ( 4 s  S s 16) of superconductors within 
the generator for superconducting bonds (shown in figure l ( a ) )  is an adjustable 

i a l  ( b l  i c 1  

Figure 1. Generators of the deterministic fractal on the hierarchical lattice for kinetic 
aggregation processes. The superconducting, growth and normal resistor bonds are respec- 
tively indicated by the bold, wavy and light lines. ( a )  The generator for the superconducting 
bonds. (6 )  The generator for the growth bonds. ( c )  The generator for the normal resistor 
bonds except for the growth bonds. 

Figure 2. First stage of construction of the deterministic fractal with the use of a line (a 
growth bond) and the generators in figure 1. The zeroth and first generations are shown 
on the left-hand and right-hand sides. The first generation is obtained from the zeroth 
generation by replacing the growth bond with its generator (shown in figure l (6 ) ) .  The 
second generation is obtained from the first generation in the way that the superconducting, 
growth and normal resistor bonds are respectively replaced with the generators shown in 
figure l ( a ) ,  (6)  and ( c ) .  
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parameter which is self-consistently determined by D ( w ) .  The generator (shown in 
figure l ( a ) )  is connected by superconducting bonds from the bottom to the top. The 
length L(n) and the member N ( n )  of the superconducting aggregate are given at the 
nth generation as 

L( n )  = 4"-I +4"-2+.  . , +4+ 1 

and 

N (  n ) = SN( n - 1) + 4" 
and scale as 

L ( n ) - L , "  and N (  n) - S".  (1) 

d r =  In S/ ln  Lo. (2) 

The fractal dimension dr of the aggregates is given by 

Consider the resistance R ( n )  between the top and bottom at the nth generation. One 
defines the resistances Ra(n)  and &(n) on the left-hand and right-hand parts. The 
following recursion relations are obtained: 

R (  n + 1) = 1/( l / R a (  n + 1) + I /&( n + 1)) 

R,( n + 1) = 1 + 1/[ 1 / R (  n) + 1 / (  1 + R (  n))]  (3) 

Rb(n 1) = 1 + ( I  + R ( n ) ) / 2  

where the initial value R ( 0 )  = 1. 
Let us derive the recursion relations for the electric fields on the growth bonds by 

using the above relations (3) .  We apply a unit voltage between the top and the bottom. 
The electric fields E(1;  i )  on the growth bond i at the first generation (see figure 2) 
are given by 

We define the electric fields on the growth bonds at the nth generation by E ( n ;  in, 
. . , i,, il).  The set (in, i n - l , .  . . , iz,  i l )  indicates the position of the growth bond 

where the ik ranges from 1 to 4. the following relations are obtained: 

E ( n + l ;  1, in , . . . ,  i , ) = e , ( n + l ) E ( n ;  in , . . . ,  i l )  

E ( n + l ; 2 , i n  , . . . ,  i , ) = e , ( n + l ) E ( n ;  in , . . . ,  i , )  

E ( n + l ; 3 ,  in ,..., i l ) = e 3 ( n + 1 ) E ( n ;  in , . . . ,  i l )  

E ( n  + 1; 4, i,, . . . , i l )  = e4(n + 1 ) E ( n ;  i n , .  . . , i l )  

where 
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For the maximum electric field E,, , (n + 1 )  = E ( n  + 1 ;  1 ,  1 ,  . . . , l ) ,  we obtain 

E m a x ( n +  1 )  = [ ( R a ( n +  1) -1) /Ra(n + l)IEmax(n). ( 6 )  

The growth probability p ( n ;  7; in, i n - l , .  . . , i 2 ,  i,) is given by 

p ( n ;  7 ;  i n ,  i "-,,.. . , i 2 ,  i , ) = ( E ( n ;  in ,  in- l  , . . . ,  i2 ,  i l ) ) "  
- I  

x (  i i . . .  ( E ( n ; i , , , i n - l  , . . . ,  i 2 , i , ) ) 7 )  
; , , = I  i , , - , = I  1 , = 1  

where 

Equation (7 )  gives a recursion relation between the nth and  ( n  - 1)th generations. The 
Ai represent the growth probability on the bond i within the generator for the growth 
bond (figure l ( b ) ) .  For the maximum growth probability pmax(n; q), we obtain the 
following recursion relation: 

Pmax(n+1; v ) = A m a x ( n + l ;  T ) P m a x ( n ;  7) (8) 

where 

A m a x ( n +  1; T)-I 

= 1 + [ R ( n ) / ( l +  R(n))]" + 2 [ R , ( n  + l ) / ( R a ( n  + 1) - l)]" 

[( Rb(n + 1) - 1 )/ Rb( + 111" [ R (  )/ ( + ( ))I". 
For n sufficiently large, the resistances R,( n), Rb( n )  and R( n) approach the fixed point: 

R,* = lim R,( n) = 1.5968 . , 
n-m 

RZ = lim Rb(n) = 1.9377 . . . (9) n - m  

R * = l i m  R ( n ) = 0 . 8 7 5 4  . . .  
n-w 

The growth probabilities A ,  then approach the fixed values A:. The maximum growth 
probability pmaX( n ;  7) scales as 

(10) ~ m a x (  n ; 7) - ( A  :ax( 7 1)" 

A k x ( ~ ) =  lim A m a x ( n ;  7). 

where 

I l -X 

If one assumes the scaling pmax( 7 )  - L1-d i  [ 161, the fractal dimension d,( 7) is given by 

( 1 1 )  

The dependence of the fractal dimensions is found on the parameter 7 describing the 
different dielectric breakdown models. It is shown in figure 3. 

4 7 )  = 1 -In A*,,,(v)/ln Lo. 



Letter to the Editor L645 

2 . 0  

1.8 

1.6 

df 

1.4 

1.2 

1.0 
0 2 4 6 8 10 

7 
Figure 3. The dependence of the fractal dimensions on the parameter 7 describing the 
different dielectric breakdown models. 

We can construct an infinite hierarchy of generalised dimensions D ( q ;  7) which 
describe the growth probability 

where 

h : ( 7 ) =  lim A i ( n ;  7). 
n-m 

We are able to calculate the set of generalised dimensions D(q;  7). For specific values 
of 7, we find D(w;  0) = 1, D(m; 1)  = 0.7099.. . and D(c0; 00) = 0 in good agreement 
with the theoretical prediction D(w;  7) = d,( 7) - 1 [ 6 ] .  The exponents D ( q ;  7) are 
plotted in figure 4. Since the number of growth bonds scales as (Lo)", the D(0; 7) 

Figure 4. The generalised dimensions D ( 9 )  plotted against 9 for 7 = 0,2,4. 
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equals one. The information dimension D(1; 1) is less than 1 in contrast to that of 
the harmonic measure on the square lattice [6,7]. We find that the shape of D ( q ;  T), 
except 7 = 0, is similar to those found for the square lattice [7] and other systems [ 171. 
The partition of D ( q ;  7) into a density of singularities f ( q )  and singularity strength 
a ( q )  is introduced: 

(13) 

We display in figure 5 the relation between a and f for the parameter 7. The a-f  
spectra have convex shapes except for 7 = 0. In the limiting case 77 + 0 all growth 
probabilities on the surface are equal, implying the only singularity a( q )  =f( q )  = 1. 
As the parameter 77 increases, the a- f  spectrum becomes a smoother convex shape. 
In the opposite limit 7 + CO the cluster grows along a straight line D(co; CO) = 0. 

D ( q ;  77) = ( 9 -  l ) - ’ ( W ( q ) - f ( q ) ) .  

I 

0 1 2 3 
U 

Figure 5. A plot o f f  against a for 7 = 0.5, 2, 3, 4. 

In summary, we have presented the deterministic fractal aggregates on the hierar- 
chical lattice in order to analytically calculate growth probability distributions in kinetic 
aggregation processes. We have analytically found the fractal dimensions and the cy -f 
spectra in diffusion-limited aggregations and related models continuously depending 
on a parameter 7. 
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